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In  deducing the viscous damping rate in surface waves confined by side walls, 
Ursell found in an example that two different calculations, one by energy dis- 
sipation within and the other by pressure working on the edge of the side-wall 
boundary layers, gave different answers. This discrepancy occurs in other ex- 
amples also and is resolved here by examining the energy transfer in the neigh- 
bourhood of the free-surface meniscus. With due care near the meniscus a 
boundary-layer-Poinear6 method is employed to give an alternative derivation 
for the rate of attenuation and to obtain in addition the frequency (or wave- 
number) shift due to viscosity. Surface tension is not considered. 

1. Introduction 
The calculation of surface-wave damping in a slightly viscous liquid (with 

viscosity v) confined by solid walls is a well-known problem. In the most common 
approach (Hunt 1952; Ursell 1952; Case & Parkinson 1957; Keulegan 1959; 
Miles 1967, etc.), it  is assumed that for infinitesimal waves of frequency (r the 
motion is essentially irrotational except near the boundaries, where viscous 
boundary layers of thickness of order (v/v)* are formed. Energy dissipation takes 
place in (a) the boundary layers near the solid walls, (b )  the boundary layer near 
the free surface and ( c )  the essentially inviscid core. If the free surface is un- 
contaminated, these contributions are respectively proportional to  u4, u% and u 
(see, for example, Ursell 1952). Thus the wall boundary layers are the most 
significant. As the net rate of dissipation must be balanced by the slow rate of 
decay of wave energy, the damping rate is found. 

In  checking his theory on edge waves with laboratory experiments Ursell 
(1952) calculated the wave damping rate in two ways: one by adding up the 
dissipation rates in the boundary layers adjacent to the side walls and the bottom, 
and the other by deducing the rate of pressure working from the essentially 
inviscid interior to the wall boundary layer. The two methods gave different 
results. Ursell argued that since the first one must be correct, there should be 
a mathematical singularity at the free-surface meniscus. Similar calculations by 
us for standing waves in rectangular and circular basins of constant depth and 
for progressive waves in a uniform channel showed the same discrepancy, 
suggesting that the ‘singularity’ is not limited to a few circumstances but is of 
quite general nature. The first purpose of this paper is to clarify the physical 
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origin of this singularity and to resolve the discrepancy. After the derivation of 
certain pertinent results including the damping rates by a perturbation analysis, 
the physical nature of this singularity is examined by a detailed discussion of 
energy transfer. It is found that the free-surface meniscus is a vital gateway by 
which energy leaks through from the waves to the side-wall boundary layer. 

A second purpose of this paper is to derive more completely the first-order 
effect of small viscosity on the dispersion relation. More specifically, if the wave- 
number is kept real, the frequency changes by a small amount which is complex 
with the imaginary part corresponding to the attenuation rate and the real part 
to the frequency shift. In  progressive waves one usually keeps the frequency real, 
then it is the wavenumber which suffers a slight complex change. 

In earlier theories little attention is given to the real frequency (or wavenumber) 
shift. Consider, however, weakly nonlinear waves in real fluids: the evolution of 
suchwaves involves time scales much longer than a wave period and often a term 
of second order in wave slope, O ( ~ U ) ~ ,  must be added in the dispersion relation. 
On the other hand, in certain cases the frequency shift due to the bottom boundary 
layer is known to be of O(k8) (Hunt 1964; Johns 1968), where 8 = (v/g)* is the 
Stokes boundary-layer thickness. In laboratory experiments the effects of 
viscosity and nonlinearity are often comparable (Chu & Mei 1971), i.e. 

O(k8) = O(ka)2. 

Consider next the linearized theory of forced oscillations: it is known that 
damping shifts the resonant peaks slightly away from the inviscid natural 
frequency. In  the neighbourhood of sharp peaks on an amplitude-frequency 
response curve the shift in real frequency may be of equal importance for pre- 
dicting correctly the response amplitude. It is therefore desirable to work out 
the whole complex frequency (or wavenumber) chanie due to viscosity. 

To the lowest order of approximation it is reasonable to expect that the first 
corrections for small viscosity and weak nonlinearity are uncoupled, hence to 
examine the former we formulate the problem here on the basis of a linearized 
viscous theory just as in all existing theories on damping rates. The conventional 
energy dissipation argument, however, gives only the damping rate and not the 
frequency shift. For two-dimensional problems with side walls two methods 
can be employed. The first is to solve the eigenvalue problem with the full 
linearized Navier-Stokes equations and boundary conditions without the assump- 
tion of small viscosity. This approach is extremely tedious (Hunt 1964) and has 
not been applied to three-dimensional problems. The second is to use the 
boundary-layer-PoincarB technique,? whose eficacy has been demonstrated by 
Greenspan (1968, chap. 2) for contained rotating fluid without a free surface and 
by Johns (1 968) and Dore (1 968) for two-dimensional free-surface problems with- 
out side walls. The boundary-layer-Poincar6 method is employed here for small 
amplitude waves in a basin or a channel with a free surface. The meniscus 
' singularity ' alluded to earlier requires that the perturbation method be executed 
with greater care than in the cited cases, where this method was applied but 

t A n  equivalent argument was first used by Longuet-Higgins (1951) for progressive 
waves without side walls. 
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where the free surface and the side walls were not present jointly. Indeed serious 
errors were committed by us in an earlier draft. The examples given here indicate 
also that application of this technique to similar problems, e.g. interfacial waves 
in a container, must be treated with equal care. 

2. Analysis 
2.1. Formulation 

We first summarize the linearized governing equations and boundary conditions 
for a small amplitude wave in a liquid bounded by the solid surface 8 and the 
free surface H (see, for example, Wehausen & Laitone 1960, p. 640). Cartesian 
co-ordinates (x‘, y’, z’) are employed and fixed on the mean free surface x‘ = 0, 
where z’ is positive upward. The following dimensionless variables are adopted 
here using the inverse k-l of a characteristic wavenumber as the length scale and 
the inviscid wave amplitude a, as the scale of motion: 

(2.1) I (x, y, 2) = MX’, y t ,  z’), t = (gk)it’ ,  

(u, v, w )  = (ut, v‘, w’)/ao(gk)4 7 = 7’/ao, 
where all variables with primes represent physical quantities and z’ = 7’ is the 
free-surface elevation. As is well known the linearized Navier-Stokes equations 
permit t h e  velocity to be split into a potential part Vq5 and a rotational part U, 
namely 

The total pressure is given by 

u = Vq5 + U, $ = $‘[k/a,(gk)*]. (2.2) 

(2.3) 

v2q5 = 0, (2.4) 

aupt = m2u, (2.5) 

and v.u = 0. (2.6) 

P’ = Pi - P P ’  = - P$; - pgz’, P i  = (Pgao) Pd, 
where p;  is the dynamic pressure. The dimensionless equations are then 

At the solid boundary all components of velocity must vanish: 

V$+U=O on 8. (2.7a) 

Assuming no surface tension and external stresses, the normal stress and tan- 
gential stresses must vanish at  the free surface: 

a$pt + 7 + 2 ~ 2  awpz = 0 on z = 0, (2.7b) 

The linearized kinematic surface condition reads 

ar/at = ul on x = 0. 
The parameter 

8 = kvt(gk)-)  4 I 

(2.7d) 

(2.8) 

is a dimensionless measure of the thickness of the oscillatory boundary layer 
and c2 may be regarded as the Reynolds number. 

16 F L M  59 
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The condition (2.7b) on the normal stress and the kinematic condition ( 2 . 7 d )  
may be combined to  give 

a Z w  

a t 2  a2 at az 
3+9+ W + W -  = o on z = 0. (2.9) 

We shall investigate the solution for a damped periodic wave correct to 
O(e) only. 

In  studying the time-periodic progressive waves in a long channel, one usually 
regards the frequency a as given and real. It is then more convenient t o  redefine 
dimensionless variables as follows: 

(x, y,z) = (r2/s) (x', y', 4, 
u = u'/flc.co, 4 = $'(fl/sao), 

The dimensionless equations are the same as 
terpreted instead as 

I t = at', 

7 = ?+o. 
(2.10) 

(2.2)-(2.7) and (2.9) with e in- 

(2.11) 

2.2. Order estimate in boundary layers 

Boundary layer near a solid wall. While the potential component dominates 
in the main interior region of the fluid, up to O(e) ,  within the boundary layer of 
thickness O(e) near the solid wall the rotational velocity U must be added to 
correct for the no-slip condition. Equation ( 2 . 7 ~ )  shows that the components of 
the rotational velocity tangential to the solid wall must be of the same order as 
the potential components namely, O(eo). We distinguish by xT and xN the co- 
ordinates tangential and normal to the wall, respectively; the positive direction 
of xlv is taken to be from the solid wall into the fluid. The boundary-layer nature 
of U can then be expressed by assuming 

U = U(x,, 5, t )  with 5 = xn./e. (2.12) 

As an immediate consequence, the continuity condition (2.6) becomes approxi- 

- a(n. U)/ag+en.V x (n x U) = 0. (2.13) 

The unit normal vector n is pointing outward from the fluid. Thus, the component 
of the rotational velocity normal to the solid wall must be of O(e).  This normal 
component induces a further adjustment of the potential solution a t  O(e). 

Free-surface boundary layer. Consider the major part of the free surface ex- 
cluding the meniscus. In  principle a rotational field exists inside the free-surface 
boundary layer as well. The linearized boundary conditions (2.7 b-d) are to apply 
a t  z = 0. For ka, B E ,  i.e. a,/S 1, which is often the case in experiments, a 
proper boundary-layer analysis should be carried out by following a moving 
curvilinear co-ordinate system with the free surface as a co-ordinate surface. As 
will now be reasoned, the condition of zero stress on the free surface, however, 
makes viscosity effective only at O(e2) ,  hence to O(e)  we can disregard the 
boundary-layer structure in the direction normal to the free surface. Consequently 

mately (Greenspan 1968, p. 25) 
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the free-surface boundary condition can still be applied at  z = 0 without the 
restriction of small a,/&. To demonstrate this point, we may imagine that the 
Lagrangian description is adopted t o  replace the Eulerian and xo is used to 
designate the position of a fluid particle a t  t = t,. At all times the true free surface 
can be taken as zo = 0, upon which the dynamic boundary condition is applied. 
For infinitesimal waves, it can be shown that the linearized Navier-Stokes 
equations in the Lagrangian description are formally the same as those in the 
Eulerian description, and the boundary-layer analysis can be carried out in the 
same way (unliiata & Mei 1970). In  particular (2 .7b ,  c )  still hold for the Lagran- 
gian velocity U, with (x, y, z )  replaced by (xo, yo, zo) and 

x = X(X0, t ) ,  
dxldt = u,(x,, t )  = V,$,(Xm t )  + U,(x,, t ) ,  

where V, denotes the gradient operator with respect to the Lagrangian CO- 
ordinate X ~ .  Defining a boundary-layer co-ordinate lo = - zn/s for the rotational 
part, i.e. UL(xo, t )  = UL(xn, yo, c0, t ) ,  we have from ( 2 . 7 ~ )  that at  lo = 0 

Therefore a(U,, VL)/aC,, = O(s) and U,, V’ = O(s)  since (UL, V,) vanish outside the 
boundary layer. From continuity W, = O(s2); it then follows from (2.9) that 

a2$,/at2 + = O(e2). 

In  other words, viscosity is ineffective on the free surface at O(E) .  Since 

x-xn = O(kao) ,  

the Eulerian and Lagrangian velocity fields differ only by O(ka,). The above 
equation therefore implies that the Eulerian field is also subject to the condition 

a2#/at2+a#/az = O($) on x = 0. (2.15) 

Free-surface meniscus. The corner region where the side-wall and free-surface 
layers overlap deserves special care. For simplicity we shall assume that near 
z = 0 the wall is vertical, see figure 1. Since the viscous effect in the free-surface 
layer is absent up to the outer edge of the side-wall layer, and the boundary 
conditions on the wall do not imply any fast changes in the vertical direction, 
the boundary-layer behaviour in this corner is only significant in the direction 
normal to the wall, i.e. a/ax, a/ay B a/&. In  particular, the rotational part of the 
vertical velocity varies quickly from [-a$/az],=,, at the wall to zero within 
a horizontal distance of O(E) away from the wall. In other words, within this width 
(and only within it) W is of O(@). Thus from (2.9), we have 

@$/at2 + a$/az = - W on z = 0. (2 .16)  

Equation (2.16) applies over the entire surface z = 0 in view of (2.15) and the 
fact that W + 0 as < + 00. Now the rotational velocity W acts as an equivalent 
pressure to the potential field. It is of O( 1) in magnitude, nevertheless it is non- 
zero only within a narrow belt of area of O(s).  Therefore its integrated effect is 

16-2 
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FIGURE 1. Division of fluid regions. (a)  Mean control volumes defined by the mean free 
surface at  z = 0. ( b )  Instantaneous control volumes defined by the instantaneous free 
surface P(t).  Dashed lines show the outer surface of boundary layer. Since dimension of 
meniscus = ~ ( k a , ) ,  ( R I ,  R,, S, 8) = ( R I ,  Be, 3, ) (1 + ~ ( k a , ) ) .  

of significance only at O(B). It indeed behaves like a singular concentrated forcing 
function at the rim of the free surface. This is an important point and the physical 
picture will be further elucidated later. 

2.3. Perturbation analysis 

Standing waves. For standing waves in a basin with mean rigid boundary 
and mean free surface P ( z  = 0 ) ,  see figure 1, we seek perturbation expansions 
as follows: 

(2.17) 

(2.18a) 

n.V$, = o on B, (2.18b) 

a$,/az-0-;$, = o on P,z = 0. ( 2 . 1 8 ~ )  

I $ = [#nCx) +&(x) + 0(62)1 eid7 

0- = f70+"l+o("). 

= [qO(x,, + sq1(x2'7 c) + 0(62)1 eigt, 

Substituting into (2.4)-( 2.9), a sequence of problems results. 
(1)  Inviscid solution of O(so): 

V2$, = 0, 

( 2 )  Boundary-layer correction of O(sn): 

( 2 . 1 9 ~ )  

(2.19b) 

( 2 . 1 9 ~ )  

Note that q, is tangential to the surface B. The continuity equation (2.6) gives 

- a(n. q,)/ac+n. V x (n x 9,) = 0, (2.20) 
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from which the normal component n. q, may be obtained by integration subject 
to the boundary condition n. q, + 0 as 6 --f co. Finally, this normal component 
does not vanish on 8 (6 = 0 )  and induces a further adjustment of the interior 
solution. 

(3) Inviscid solution of O(s) :  
V2$, = 0, (2.21a) 

n.Vd, = - [n.ql]s on 8, (2.21 b)  

where [ Is represents a quantity evaluated at  the solid wall. Recall that W, is 
the vertical component of the first-order, O(s0), rotational velocity in the main 
side-wall boundary layer. Owing to the narrow O(s)  region of its existence its 
effect is only present in the O(B) problem as was discussed in 52.2. 

Problem 1 is homogeneous and its standing-wave solution including the 
eigenvalue condition for go (dispersion relation) can be found in principle. 
Problem 2 is the classical Stokes problem of an oscillating plate with the well- 
known solution 

- 

a$,/ax - g$d1 = 2a0v, do - @ / E  on P ( x  = o) ,  (2.21c) 

9 0  = - FdOlS r(6), r(6) = exP c- (1  + i) (+go)$ 81. (2.22) 

Now problem 3 is inhomogeneous. Upon using Green’s second identity for 4: 
and d1 for the whole volume R ,  

(45: V2d, - dlv2d:, d‘V = jR+F (4: V A  - W d 3  n. dA7 L 
and applying all the conditions (2.18) and (2.21), we obtain a solvability condition 
for dl which determines v,: 

The alternative expressions are equivalent by virtue of Gauss’s theorem and 
( 2 . 1 8 ~ ) .  By taking the real and imaginary parts, the frequency change Re (ml) 
and the damping factor Im (wl) are found. The imaginary part of the integrals 
in the numerator in (2.23) may be shown to represent the average rates of pressure 
working: the first through the outer edge of wall boundary layer (side walls and 
bottom) and the second through the narrow strip of free surface bounding the 
side-wall layer from above. Since the denominator is essentially the energy in 
the inviscid core, physically Im v = Im (EB,)  represents the ratio of the work 
done by the interior on the boundary layer to the total energy in the main body 
of the fluid. 

Progressive waves in a channel. For progressive waves in a straight channel of 
uniform cross-section we first assume that the wavenumber Ic is real and that 
the time rate of attenuation is wanted. Instead of (2.17) we take the following 
expansions : 9 = Cdo(y, 4 + &(y, 4 + W2)1 eibt-d, (2.24 a )  

U = [go@,, 6) + w l ( X T ,  6) + 0(c2)1 ei(ut-2), (2.24 b )  

0- = fT0+E(T1+0(€2) ,  (2.24 c) 
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where the x axis coincides with the channel axis. The characteristic k used in 
(2.1) is the physical wavenumber in the x direction. Upon substitution the 
resulting problems are almost the same as (2.18), (2.19) and (2.21) except that n 
lies in the y, z plane and the Laplace equation for the inviscid problems (1 and 3) 
must be replaced by 

($+&-I)& = 0 (rn = 0,1, ...). (2.25) 

With these modifications the result (2.23) is again valid. The surface and volume 
integations are for a region length one unit in the x direction. 

Alternatively, if the frequency is assumed real and fixed the change in wave- 
number can be inferred from g1 above through the group velocity. One could 
also begin by adopting the dimensionless variables defined in (2.10) with E 

defined by (2.11), and replace the exponential factor in the expansions of 
(2.24a, b )  by ei(kz-t) with 

k = k ,+€k ,+  ... (2.26) 

replacing ( 2 . 2 4 ~ ) .  Similar perturbation analysis then gives 

3. Mechanism of energy transfer 
Our purpose here is to examine the energy budget within various fluid regions 

so that the process of energy transfer is clearly revealed. The common approach 
of attributing wave decay to viscous dissipation amounts to a special choice of the 
region, i.e. the entire fluid volume. A detailed look at the side-wall boundary 
layer and the free-surface meniscus brings the path of energy flow into a much 
sharper focus. In  particular, we shall find by order estimates that the free-surface 
meniscus is an important passage via which the wave energy is lost from the 
essentially inviscid interior to the side-wall boundary layer. This discussion is 
therefore relevant to the physical nature of Ursell’s singularity. In  the next 
section these estimates are substantiated explicitly for special examples. 

We first quote the equation of mechanical energy. Take a volume ?‘- which 
is bounded by the surfaced. In  physical variables the mechanical energy equation 
in integral form is (Landau & Lifshitz 1959, p. 54) 

7;3dV’, (3.1) 

where 

is the viscous stress tensor, eij the strain tensor, (xi, x;, x;) = (x’, y’, 2’) and gi is 
the body force of gravity: gl,2 = 0 and g, = -g. For small amplitude waves, 
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ka, < 1, the energy flux term in the first surface integral is of O(lca,J3 and can be 
ignored in comparison with the remaining terms of O ( ~ U , ) ~ .  Writing 

gi = - a(gz')/az; 

and using Gauss's theorem we have 

= - /&p&ujn,dA' ,  

where p i  = p' + gz' is the dynamic pressure. 
Taking time averages defined by 

t'+T 

f= 'J fdt ' ,  T = 27r/Rea, 
T t' 

(3.3a) 
- 

so that a f p t  = afpt,  (3.3b) 

and adopting the dimensionless variables (2. I), the approximate mechanical 
energy equation reads 

Physically the terms represent respectively the rate of change of kinetic energy 
(I), the rate of pressure working (11), the rate of viscous stress working (111) 
and the rate of dissipation (IV). We divide the entire volume of fluid as in figure I 
into the inviscid interior RI, the wall boundary layer RE and the meniscus RM. The 
solid faces of the boundary layers are denoted by X and X, and the correspond- 
ing outer edges of the layers by 8 a n d  gM.  For generality it is assumed that 
a& % 1.  In the neighbourhood of the meniscus the free surface attains its 
greatest height at  the level M and least height a t  the level A. At any instant the 
free surface M E D  must begin at  the fixed point M above which the wall is not 
wetted. The piece of free surface M E  of the meniscus changes from being nearly 
horizontal at the maximum rise to being a thin film at  the maximum fall. A t  
any intermediate time during each period the meniscus consists of a thin viscous 
boundary layer MAB of thickness of O(e) and height of O(ka,,) near the wall 
and a potential region whose boundary and volume change with time. The lower 
extreme of this boundary layer AB also forms the ceiling of the main wall 
boundary layer RE. We shall consider in succession the energy budget of the 
entire fluid volume, the menisous boundary layer and lastly the inviscid core, 
being the total volume minus all the boundary layers. 

We now sort out the leading terms in (3.4) for different control volumes. 

3.1. The entire Jluid 

Let the volume V be the entire fluid volume R, hence the boundary surface 
consists of all wetted walls and the free surface F: 

Y - =  R,+R,+R,, d = X + S M + F .  
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Referring to (3.4) term I is well approximated by 
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f :IRI UiUidV - 

since RI = O(1) 9 RE+ R, = O(E) ,  and ui = O(1) in all regions. We antici- 
pate that the time rate of change of all mean quantities is aO/at = O(s)  hence 
term I = O(E) .  

For term 11, uini = 0 on the solid wall S + S, but not on the free surface P. 
The contribution of the meniscus free surface ( M E )  is certainly negligible com- 
pared with (being O(ka,) smaller than) that of the main free surface away from 
the meniscus. Furthermore on the main free surface viscosity is ineffective, 
p ,  = [ - a$/at],=, = 7 and uinj = w = 7, so the integral can be written as 

where P denotes the mean free surface z = 0. The last expression represents the 
change of potential energy of the free surface and is of course also of O(s). Hence 
term I1 = O ( E ) .  

Term I11 vanishes on S + S, since ui = 0; and also on P since the free surface 
is stress-free: eijni = 0. 

Term IV = O ( E )  in the boundary layers since eii = 0(c1) and R, + RM = O(e).  
The contribution from the essentially inviscid interior is of O(s2).  Furthermore, 
the volume of the meniscus boundary layer is much smaller than the volume of the 
wall boundary layer, RMIR, = O(ka,), while the straining rate is of the same order. 
Hence we need only to account for the dissipation in the main wall boundary 
layer. Summing up we have to O ( E )  

which is the basis of many existing damping theories. 

3.2. Meniscus boundary layer? 

Now consider the meniscus boundary layer with volume 9'- = R, and bounding 
surfaced = 8, + 1, + SMw, where 8, is the side wall, RM the outer edge of the 
boundary layer and S,, the borderline with the main wall layer, see figure 2. 
Referring to (3.4) we find the following. 

Term I. ui = O(1) and RM = O(eka) hence 

term I = o (4IRMuiuidV). 

Since aT, = ~ ( e ) ,  term I = ~ ( e z k a ) .  . .  
Term 11. S, gives no contribution since ui = 0. On SMw, uini = w = O(l) ,  

p ,  = O( 1) and X,, = O(s), hence the integral over S,, is of O(s).  On the outer 
edge RM of the meniscus boundary layer the tangential velocity is w = O(1). 

t Comments by Professor G. K. Batchelor during a lecture given by one of the authors 
have led to the arguments in this section. 
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FIGURE 2.  Enlarged view of meniscus neighbourhood. The line AB (SMW) 
symbolizes border between meniscus and main wall boundary layers. 

Note that the tangential (vertical) length scale is of O(ku,). Hence by continuity 
the normal (horizontal) velocity is uini = O(s/ku,). Sincep, = - & = O( 1) and the 
area of 8, is of O(ku,) we have 

p,u,nidA = O(E). I&- 
Term 111. On S,, u, = 0. On f l M ,  eij = O(1). The integral on SM-t f lM is of 

O(s2kaJ. On SMw, eij = O(e-l) and u, = O( l), and the area of S,, = O(E),  hence 
the integral is only of O(e2).  

Term IV. As was estimated before the dissipation rate in this volume is of 
0 (sku,). 

Thus t o  O ( E )  
- 

/g&PduinidA +SJlrwPd",nidA = O(E2), (3.6) 

which means that, by pressure working on RM, power is fed into the meniscus 
boundary layer from the inviscid core; it is then transmitted essentially un- 
diminished to the main wall boundary layer also through pressure working on 
Sm. This is an important source of energy supply for the main side-wall layer ! 

3.3. Wall boundary layer 

Take the wall layer bounded by the solid surface S ,  the outer edge of the boundary 
layer f l  and the narrow strip bordering the free-surface menicus boundary layer 
SMw. Similar estimates give that term I = O(s2), term I1 = O(e), term I11 = O(s2) 
and term IV = O(E). In  particular the pressure working term has contributions 
from both s" and SMw. The resulting energy budget is, to O(s) ,  given by 
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FIGURE 3. Container with bottom corners. Main wall boundary layer R,  
is separated into side-wall Rw and bottom RB layers ; R,  = Rw + Rg. 

namely pressure working on the ceiling and on the side balances the dissipation 
within. 

If the container has sharp convex corners below the free surface it is con- 
venient to separate the wall layer into a side-wall layer R, and a bottom layer R,. 
The transition zones are corners of area of O(c2), see figure 3. Since at  a corner of 
this kind the irrotational field has a stagnation point, all surface and volume 
integrals in (3.4) associated with the corner are at  most of O(c2) and can be 
ignored. Thus the energy budget for the bottom boundary layer is 

i.e. dissipation within R, is balanced by pressure working on the side f l B  (not 
at the corners) by the inviscid core. 

3.4. Interior core 

Finally we take the inviscid core V = R, with bounding surface 

22 = X,+X,+li;. 

It is easily shown that term I = O(c), term I1 = O(c), term I11 = O(c2), since 
eii, ui = O(l) ,  and term IV = O(e2). Furthermore, of all the surface integrals con- 
tributing to term 11, the free-surface integral can be transformed into the 
potential energy as before. Hence 

Now on the left-hand side RI and FI may be replaced by their mean counterparts 
Rand B with an error of O(cka,, s2). Finally 

(3.9) 
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expressing the energy budget for the inviscid core. It is clear that (3.5), (3.6), 
(3.7) and (3.9) are totally consistent. Upon using (3.6) we can also write (3.9) as 

3.5. The damping rate 

It is now easy to re-derive the damping rate (2.23) from (3.10). As a slight modi- 
fication of a well-known formula, it can be shown that if 

a& = Re [A,  exp {i(& + id%)) t}]  (3.11) 

wj th a( i ) /a( r )  = O(s), (3.12) 

then %a, = + Im (iAf A,) exp { - 2&) [ 1 + O(s)] 

= gRe(A~A,)exp(-2a(ot}[1 - tO(s)] .  (3.13) 

The left-hand side of (3.10) involves only potential quantities hence the 
equipartition theorem may be used. On the right-hand side the following is true: 

[pd]g = - [a$/at]s = ( - a,$,), eid + O(e), 

[uini)g = [n. V$]S = - [n . q,], eiut + O(s2),  

- 

[Pdl,,, = ( - i~o$o)s,2=o eiut + O(4, 

and in view of (2.21b). Upon substitution we have 

-2&) lV$o[2dV = sIm i (-iao$,)*[n.ql],dA 

I) J b  
Im [Go [ s, $an.  411s +/ @ w, dA/€]) 

2 s  B lV$Ol2dV 

- ( - ia, $,): w, dA/€ 

S H  ( u s  

or Im a, = a")/€ = SMW . (3.14) 

Without loss of accuracy the area of integration for the first integral in the 
numerator can be replaced by s a n d  that for the second integral by ( x  = 0). This 
result for the damping rate is in agreement with (2.23), deduced by the mathe- 
matical requirement of solvabjlity for +,. 

The arguments in the present section rely on order-of-magnitude estimates. 
The special examples in the following section not only confirm them but also 
give further insight into the energy transfer. 

4. Examples 

of which involve vertical side walls. 
The complex frequency shift is worked out for three familiar examples, all 

4. I .  Standing waves in a circular basin 

The origin ofthe polar co-ordinate system is fixed at  the centre ofthe free surface; 
the radius of the basin is a' and the depth h'. 
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As only one mode will be considered below, we choose the scaling wavenumber k 
(cf. (2.1)) to be that of the (m,n) mode, k,,, i.e. the mth root of the equation 

JA(k,,a’) = 0 

The first-order inviscid solution for the (m, n) mode is 

(n,m = 1,2,3, ...), 
where JA = dJ,(z)/dz. 

4, = icr,(sinh h)-l cosh (z  + h) J,(r) sin nt?, (4.2) 

where cr; = tanh h. (4.3) 

Let U ,  V and W denote the components of the rotational velocity in the r ,  t? 
and z directions, respectively. We divide the wall boundary layer into two parts, 
i.e. the side-wall and the bottom layer, denoted by subscripts W and B re- 
spectively, and let the boundary-layer co-ordinates be 

<w = (a-r) /c ,  <B = (z+h)/E. (4.4a, b) 

The first-order boundary-layer solutions are 

sinh (x + h)  
sinh h W,, = - irr, J,(a) sin nt? r ( <,) 

in the neighbourhood of the side wall and 

-ice n 

sinh h r V,, = -- Jn(r) cos ner (<B)B), 

(4.5a) 

(4.5b) 

(4.5c) 

(4.6a) 

(4.6b) 

(4.6~) 

in the neighbourhood of the bottom with I?(<) defined in (2.22). The induced 
velocities normal to the boundary layers are 

near the side wall and 

near the bottom. 
Substituting into (2.23) we obtain 

a2 + n2 + I - -  - 
crl = - ( I  -i) (y [ 2a(a2 - n2) ( t) sin: 2h] ’ (4.9) 
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whose imaginary part agrees with the damping rate found by Case & Parkinson 
(1957). 

It is interesting to examine the energy details for the side-wall boundary 
layer, using the explicit solution. 

The average work done by the pressure on the strip of surface S,, is, omitting 
the factor exp { - 2 d Q t } ,  

(4.10) 

where use has been made of the fact that the dynamic pressure and the potential 
part of the velocity are out of phase to the present order of approximation. The 
work done by the pressure on the interface between the inviscid interior and the 
side-wall layer is (noting that the outward normal points towards the z axis) 

- n-a(vo)*( 1+- 2h ) (n2 - - 1  ) J i ( a ) .  
--T 3 sinh2h a2 

(4.11) 

Lastly, the average rate of viscous dissipation in the side-wall layer is 

It is easily seen that the three energy terms (4.10)-(4.12) add up precisely to 
zero as estimated in (3.6). 

for all modes, it follows that the side-wall layer 
receives power from waves through the meniscus boundary layer above, spends 
only a part of it on internal dissipation and gives up the rest to the inviscid 
interior ! 

Since n2 < a2 = 

Similar calculation for the bottom layer confirms (3.8), with no surprises. 

4.2. Standing waves in a rectangular basin 

We have also analysed standing waves in a cylindrical basin of rectangular plan 
form. For the (m, n) mode, the first-order potential is given by 

ifTo nn-x mn-y 
cash ( X  + h) cos - cos - , 9o = sinhh a b 

( 4 . 1 3 ~ )  

@, = tanh h, (4.13b) 

where the scaling k is the wavenumber k,, of the (m, n) mode, satisfying 

kkn = (nn-/a’)2 + (mn/b’)2 (4.14) 
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ITI = - (I  - i) (2) I T 4 1  (a [I - f (S)']+k [I - 2 1 (.;)'I mn 

s m i Z h [  a (  a)' b (  b )'I]* h nn h mn +- I - -  - -- - (4'15) 

Keulegan (1 959) worked out the damping rate for n = 1 and m = 0, which agrees 
with the imaginary part above. The energy budget has been checked as in the 
circular cylinder case with similar conclusions. 

4.3. Plane progressive waves in a uniform channel of rectangular cross-section 

The centre-line of the free surface is taken to be the x axis of the rectangular 
co-ordinate system; the channel width is 2b' and the depth h'. 

For simplicity the first-order inviscid solution 4, is assumed to represent a plane 
wave with uniform amplitude across the channel hence 4o = $,(z) is independent 
of y (although waves with width-wise variation can be treated without dif- 
ficulty). This is the most frequent situation encountered in laboratory experi- 
ments. The first-order potential solution is well known: 

4, = ig, cosh ( z  + h)/sinh h (4.16) 

with C T ~  = tanh h. 

The frequency change is, from (2.23), 
CTl = - (1 -i) (2)i (- 1 +') . 

sinh 2h b 
(4.17) 

By straightforward calculations similar to (4.10)-(4.12), it is found that in the 
bottom boundary layer the dissipation is balanced by pressure working by the 
inviscid interior. However, owing to the two-dimensional nature of the first- 
order potential, there is no rotational velocity component induced normal to the 
side-wall boundary layers.*This is seen from the following relation for the left side 
wall (y N b ) :  

CW K w = - / l  (r aq,-iuow) dCw = - [2-4,],;,s 00 rXi7)dG.v 

= o  (4.18) 
and the bracket before the second integral is essentially the Laplacian of the 
two-dimensional potential solution and hence vanishes. Consequently, there is 
no net exchange of pressure working between the inviscid interior and the side- 
wall through fl,. Detailed analysis of energy balance at  O(E)  shows that the 
viscous dissipation within is exactly compensated from above by the pressure 
working at the strip of surface X M w ,  which of course is supplied by the waves 
through the meniscus boundary layer f l M .  

We record here that, if CT is taken as real, the wavenumber, according to (2.27), 

is given by k = k,+ek,, ( 4 . 1 9 ~ )  

k,tanhk,h = 1, (4.19b) 

( 4 . 1 9 ~ )  

The imaginary part of k, agrees with the attenuation rate of Hunt (1952). 
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5. Concluding remarks 
The discussion in $ 3  reveals that pressure working by the main core of the 

fluid gives energy to the meniscus boundary layer. Owing to the small volume, 
dissipation in the meniscus is negligible and the same energy is transmitted to 
the side-wall boundary layer underneath, also by pressure working. The role of 
viscosity in the meniscus layer is to make net pressure working possible, i.e. 
pduin, + 0. It is possible in certain examples (standing wave, $ 4) that the energy 
input from above cannot be totally dissipated in the side-wall boundary layer 
and the excess must be returned to the inviscid core through the side gW by 
pressure working. In  the example of plane progressive waves in a rectangular 
channel, the excess is zero. Thus the meniscus plays an important role of an 
intermediary, although its internal dynamics is difficult to analyse in detail. This 
role is certainly not evident in the usual reckoning of viscous dissipation. 

We have also found it necessary to exercise care in applying the boundary- 
layer-Poincar6 method. In  particular the second-order boundary-value problem 
€or the potential involves a singular boundary condition at the rim of the free 
surface. Similar subtleties are likely to appear in interfacial wave problems if 
the complex frequency shift (not just its imaginary part) is desired. 

Finally, we realize that our picture of energy transfer may appear peculiar 
to some readers’ intuition. Indeed one of the referees believes that the energy 
transport vector should point from the interior of the fluid towards the side 
walls. Detailed measurement of the flow field would be needed to settle this 
issue. 

- 
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To all of them the authors are grateful. This work was begun under the sponsor- 
ship of National Science Foundation and the Coastal Engineering Research 
Center, U.S. Army, and the last revision was carried out while one of us (C. C. M.) 
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University of Cambridge. The visit was made possible by the support of a 
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